$$|\psi(t)\rangle = e^{-i\hat{H}t/\hbar}|\psi(0)\rangle$$
$$\hat{T}|\psi(t)\rangle = |\psi(-t)\rangle$$
$$U(t,t_0)=e^{- \frac{i}{\hbar}\int_{t_0}^{t}\hat{H}(\tau)\,d\tau}$$
$$\rho_{CTC}=\text{Tr}_S\left[U(\rho_S\otimes\rho_{CTC})U^\dagger\right]$$
$$\boxed{
\exists\ \rho_{CTC} \text{ such that } \rho_{CTC}^{out}=\rho_{CTC}^{in}
}$$
$$\Rightarrow \text{Closed Timelike Loop Achieved}$$
⚠ WARNING: TEMPORAL CAUSALITY UNSTABLE
MEMORY BLEED • IDENTITY DRIFT • PARADOX TOLERANCE REQUIRED